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SUMMARY 

The goal of this research was to determine whether there is any interaction between the type of constitutive 
equation used and the degree of mesh refinement, as well as how the type of constitutive equation might 
affect the convergence and quality of the solution, for a planar 4: 1 contraction in the finite eiement method. 
Five constitutive equations were used in this work: the Phan-Thien-Tanner (PTT), Johnson-Segalman (JS), 
White-Metzner (WM), Leonov-like and upper convected Maxwell (UCM) models. A penalty Galerkin finite 
element technique was used to solve the system of non-linear differential equations. The constitutive 
equations were fitted to  the steady shear viscosity and normal stress data for a polystyrene melt. In general it 
was found that the convergence limit based on the Deborah number De and the Weissenberg number We 
varied from model to  model and from mesh to  mesh. From a practical point of view it was observed that the 
wall shear stress in the downstream region should also be indicated at the point where convergence is lost, 
since this parameter reflects the throughput conditions. Because of the dependence of convergence on the 
combination of mesh size and constitutive equation, predictions of the computations were compared with 
birefringence data obtained for the same polystyrene melt flowing through a 4: 1 planar contraction. 
Refinement in the mesh led to better agreement between the predictions using the PTT model and flow 
birefringence, but the oscillations became worse in the corner region as the mesh was further refined, 
eventually leading to the loss of convergence of the numerical algorithm. In comparing results using different 
models a t  the same wall shear stress conditions and on the same mesh, it was found that the PTT model gave 
less overshoot of the stresses a t  the re-entrant corner. Away from the corner there were very small differences 
between the quality of the solutions obtained using different models. All the models predicted solutions with 
oscillations. However, the values of the solutions oscillated around the experimental birefringence data, even 
when the numerical algorithm would not converge. Whereas the stresses are predicted to  oscillate, the 
streamlines and velocity field remained smooth. Predictions for the existence of vortices as well as for the 
entrance pressure loss (Ape",) varied from model to model. The UCM and WM models predicted negative 
values for Ape",. 

KEY WORDS Comparison Experimental Simulation Planar entry flow Viscoelastic Convergence 

1. INTRODUCTION 

The numerical simulation of flow of viscoelastic fluids into an abrupt contraction has received 
considerable attention in the past few years because it serves as a test problem for assessing the 
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difficulties associated with obtaining a numerically convergent and physically realistic solution. 
Although significant progress has been made in resolving some of the difficulties that were 
initially encountered in the application of numerical methods (mainly finite difference and finite 
element methods), there still remains the problem of whether the numerical predictions are 
physically correct, even under conditions when the algorithm is convergent. The present paper is 
primarily concerned with the problem of whether it is possible to obtain physically realistic 
solutions, but it also addresses the problem of convergenct:. It includes the study of the combined 
effect of the mesh size and the constitutive equation on the convergence of the finite element 
method (FEM). It examines the quality of the numerical solutions by comparing them with 
experimental data obtained for similar flow conditions. Although the numerical method used 
here still suffers from the convergence problem, it serves to provide useful information about the 
role of the constitutive equation in generating physici4ly realistic solutions. 

Although the main thrust of the present article is not the loss of convergence of the numerical 
solutions, a brief review is necessary since the problem is so dominant. A detailed review on this 
topic up to 1983 can be found in the monograph by Crochet et ul.' Furthermore, a brief review is 
necessary since it not only facilitates discussion of newel- algorithms but also helps justify the 
work presented here. First we give a brief account of the initial ideas proposed as the cause of the 
loss of convergence and then discuss the latest methods for overcoming the breakdown of the 
numerical solution. 

In general, it has been observed that as the elasticity of the flow increases, oscillations start to 
appear in the numerical solution, especially around singular points such as corners, boundary 
discontinuities or stagnation points, and the solution deteriorates quickly. At even higher 
elasticity levels the oscillations increase and the method ceases to converge. The limit of the 
Deborah (De)  or the Weissenberg (We) number (these two dimensionless parameters are generally 
used as indicators of the elasticity level in the flow), above which no convergence could be 
achieved, depended on the type of the flow, the rheological model and the meshes that were used. 
Most disturbingly, the limits for convergence decreased as the mesh was refined.3 

At first, the possible causes of the failure of convergence: were divided into those related to the 
approximation error and those related to bifurcation or limit  point^.^ By approximation error 
was meant the inability of the weighted residual method and the mesh to discretize the problem. 
There has been a lot of discussion in the literature about the existence of bifurcation or limit 
points in the solution of viscoelastic f l o ~ s . ~ - "  The existence of these singular points may be 
caused either by the full set of differential equations or by their discretized form.5 However, the 
consensus now among authors on this subject is that when these points are found, they are the 
result of excessive approximation error. 

In order to overcome these problems, several new approaches have been proposed. According 
to Debbaut et ul.,' ' the excessive approximation error is associated with two aspects. One is the 
compatibility between the finite element approximations for velocity and stress. To overcome this 
problem, Marchal and Crochet' ' proposed a macro-element for velocity (biquadratic approx- 
imations) subdivided into n x n elements for stress (bilinear approximations). The other aspect is 
related to the change in type of the system equations from elliptic to hyperbolic, as the elasticity 
level becomes high. l 3  More specifically, DuPret et showed that numerical inaccuracies 
caused by singularities or boundary layers can lead to such an artificial change of type of the 
equations. To overcome this, Marchal and Crochet used a streamline upwinding method 
developed by Brooks and Hughes." The accuracy of these methods has not been evaluated at 
this time. 

King et ~ 1 . ' ~  used another approach to address the problem of change of type of the system of 
equations. On the basis of ideas by Renardy,I7 they proposed a formulation of the momentum 
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equation that makes the elliptic character of this equation explicit. No special elements seemed to 
be needed when using this approach. 

In spite of the success of the two methods described above and that of special methods 
described by Beris et d.'* to obtain convergent solutions at higher levels of elasticity, there are 
still problems with each approach. For the case of additive diffusion, according to King et ~ 1 . ' ~  
smooth solutions can be computed which do not approximate well the fine structure of stress and 
velocity fields in boundary layers and near singularities. In the case of the explicitly elliptic 
momentum equation the method is limited at present to whether one can find the appropriate 
form for a given constitutive equation. In the case of spectral methods'* it is not possible to use 
the method for problems with re-entrant corners. Hence, although new algorithms have been 
developed recently, none is completely satisfactory at this point. 

In this paper we address those aspects that must be considered no matter what method is used. 
First there is the role played by the constitutive equation in obtaining results which are physically 
realistic. In particular We and De can be greater than 1.0 for a given constitutive equation but the 
overall stress be quite low. Furthermore, some constitutive equations seem to be easier to obtain 
smooth solutions for than others. Secondly, in this paper we provide direct evidence for the loss of 
the numerical solution arising at the re-entrant corners in planar entry flow. Finally, we evaluate 
whether the use of linear approximations for stress and velocity in the penalty/Galerkin finite 
element method provides reasonable solutions which agree well with experimental data. 

2. RHEOLOGICAL EQUATIONS OF STATE 

The rheological equation of state that is used to describe the material in the simulated flow will 
influence both the quality of the solution and its convergence behaviour. In the present report, 
five different rheological models were used to study their effect on convergence and for com- 
parison of the numerical results. These models were the Phan-Thien-Tanner (PTT), the 
Johnson--Segalman (JS) the Leonov-like, the White-Metzner (WM) and the upper convected 
Maxwell (UCM) models and were chosen because of the variety in their predictions in simple 
shear and extensional flows. A summary of these predictions is given in the following. The 
interested reader should look at References 19-24 for details on the derivation of the models. 

2.1. Leonov-like model 

The model proposed by L e o n o ~ ' ~ * ~ ~  was derived from irreversible thermodynamic principles, 
is an extension of rubber elasticity to viscoelastic media and can be considered as a non-linear 
form of the generalized Maxwell model with n relaxation times and a viscous retardation term. 
The retardation term may also include strain hardening. A simplified form of the Leonov model 
with one relaxation time and no retardation term is the Leonov-like modelZ1 

where 
same as the original Leonov model and its predictions are 

denotes the upper convected time derivative of T . ~ ~  In simple shear flow this model is the 



376 A. D. GOTSIS, D. G. BAIRD A N D  J .  N. REDDY 

The elongational viscosity ij predicted by this model is equal to 3‘1, at low extension rates and 
increases asymptotically to 6q0 at high extension rates. 

From the set of equations (2) and (3), the relaxation parameters for a specific fluid can be 
evaluated by fitting either the viscosity (‘1) or the primary normal stress difference (Nl). By 
evaluating the parameters with one set of data and predicting the other, it has been shown that 
the model fits well the viscometric data.” 

2.2. Phan-Thien-Tanner model 

While the model proposed by Leonov was derived from continuum mechanics and thermo- 
dynamics arguments, the Phan-Thien-Tanner model was derived from molecular considerations 
and was based on the ideas of non-affine network t h e ~ r i e s . ’ ~ , ~ ~  The model has the form of the 
upper convected generalized Maxwell model with extra non-linear terms in the stress: 

7 = p i ,  

In addition to the relaxation times and viscosities, this model employs parameters 5 ,  which 
represents the non-affineness of the network, and E ,  which represents the rate of destruction of the 
temporary network junctions. A finite value of E results in a maximum in the change of the 
extensional viscosity with extension rate, and 5 causes the viscosity to shear-thin rapidly to the 
degree that a maximum appears in the shear stress versus shear rate curve. A retardation term has 
been added to correct this, the value of which has to be greater than 1/9 the zero shear rate 
viscosity. 

The PTT model with one relaxation mode and such a retardation term is expressed as follows: 

z = z1 + T 2 ,  (6 )  

T2 = ‘12 L, (8) 
with t1 the viscoelastic stress and 
shear flow are 

a purely viscous stress. The predictions of this model in simple 

‘11 - + ‘12, ‘1 = [l  + 5(2 - 5)n2r21 
2‘11 A?’ 

N1 = [ l  + 5(2 - 5)i21;”1’ 

(9) 

The relaxation parameters of the PTT model can be evaluated in the same way as for the 
Leonov model. The parameter is usually evaluated from a horizontal shift between the dynamic 
(‘1’) and the simple shear viscosity curves according to the following equation:23 
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The predictions of the model in simple shear flow are insensitive to the value of E. This parameter 
has to be evaluated from elongational viscosity data.24 

2.3. Other models 

Besides the PTT and the Leonov-like models, the upper convected Maxwell, the 
White-Metzner and the Johnson-Segalman models were also used. The first two models are 
widely used in flow calculations because of their simplicity. They were used in this work in the 
following form:25 

z + At(,) = qy.  ( 1 3 )  
In this relation the viscosity and the relaxation time coefficients ( q  and A )  of the UCM model are 
constants, while for the WM model they are empirical functions of the second invariant of the rate 
of deformation tensor. 

The Johnson-Segalman model is similar to the PTT model but does not contain the term with 
the parameter E.  As a result, it predicts an unbounded extensional viscosity at high extension 
rates. Its predictions in simple shear flow are very close to the predictions of the PTT model. 

2.4. Parameters of the models 

The principal polymeric materials for which all the calculations were done was a polystyrene 
melt (PS) of weight-average molecular weight of 255 OOO (trade name STYRON 678, made by 
Dow Chemical Co.). Viscometric data for this material at 190 "C are given in Reference 26 and 
were used to evaluate the parameters of all models. The zero shear viscosity and the relaxation 
times in the PTT and the Leonov-like models were evaluated from the viscosity curve with the 
help of equations (2), (3), (9) and (10). The relaxation time and the viscosity coefficient of the UCM 
and the WM models were evaluated from both N ,  and q data. Non-linear least squares fit 
techniques were used to evaluate the parameters. 

Table I. Values for the coefficients of the rheological models to fit the simple shear 
behaviour of STYRON 678 at 190 "C 

Model 
- ~~ ~~ 

Value of the coefficient 

Phan-Thien-Tanner q1 = 9660 Pas 
or qz = 1288 Pas 
Johnson-Segalman I = 0.5 s r = 0.2 

E = 0.015 (PTT only) 
White-Metzner qI  = qo[I + (mlj)2]("-1)'2 

v 2  = 0 
qo = 11100Pas 
m = 4.0s 
n = 0.67 
I = 0.43504 - 0.45297 log,,$ + 0.1388 (loglo$)2 

Upper convected v1 = 11100Pas 
Maxwell I = 0 6 s  
Leonov-like q1 = 10400 Pas 

q2 = 624 Pas 
I = 0.6s 
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The data over the shear rates measured did not show any indication of an infinite shear rate 
plateau viscosity. For the retardation viscosity of the PTT model, the value of q1/q2 = 7 3  was 
chosen here, with the understanding that the model will not describe the experimental data 
at high shear rates (above 60s-I) .  Even though a retardation term was not necessary for 
the Leonov-like model, a value of 6% of the zero shear rate viscosity was used for the iiifinite 
shear rate plateau, because it was found that the presence of such a term stabilized the method 
without affecting the results considerably. The parameter 15 in the PTT model was evaluated by 
equation (12). At the time of this work there were no elongational data available at high extension 
rates and hence E of the PTT model could not be evaluateld. A value of 0.015 was used, which is 
thought to give a good estimate for polymeric melts.24 The parameters of all the models are 
shown in Table I. The fit of the various models to the viscometric data is shown in Figures 1-3. 

3. THE FINITE ELEMENT MODEL 

The equations that are solved in the problem of isothermal flow of incompressible viscoelastic 
fluids are the equations of conservation of momentum, conservation of mass and the constitutive 
equation. When inertia terms and gravity are neglected, these equations in Cartesian component 
form become* 

(14) 7 . .  . - p .  = 0 ,  
I J ,  J 

where k, is a differential operator that can have the form of equations (l), (6)-(8) or (13), tiJ is the 
extra stress tensor, f l J  is the rate of deformation tensor and ui is the velocity vector. 

The penalty/Galerkin finite element method was used in the present work to discretize the 
equations above. In this method the equation of continuity is considered as a constraint on the 
equation of momentum and the pressure P is approximated by using a large positive number yp 
(the penalty parameter) such that 

P = - yp(ui , i ) .  (17) 
The incompressibility constraint is imposed by substituting this approximation into the 
momentum equation. The velocity and stress profiles are then obtained as the solution of the 
system of the modified momentum equation and the constitutive equation. The convergence of 
the solution to the incompressible solution is affected by the choice of the penalty parameter. In 
principle, the higher the value of yp  the more incompressible the solution becomes. It has been 
found that a value of yp  of the order of lo6 times the viscosity will give accurate results for 
Newtonian flows.2' The penalty method, however, has been found to require a reduced order for 
the integration of the penalty terms in order to obtain non-trivial solutions.28 The integration of 
the penalty term was carried over one Gauss point in the linear elements and over four in the 
quadratic elements, while for the other terms the integrations were carried over four and nine 
points, respectively. 

The Galerkin weak form of the equation of motion is obtained after the substitution into 
equation (14) oft  from equations (6)-(8), the incorporation of the penalty term (equation (18)) and 
the application of the divergence theorem. The weak form of the continuity equation is not 

* The Einstein notation is used here in which the repeated indices in t b  same term imply summation. 
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shear r a t e  [sec- ' )  

Figure 1. Viscosity versus shear rate for STYRON 678 at 190°C. The lines represent predictions of the rheological 
models 

Figure 2. Primary normal stress difference of STYRON 678 at 190°C 

needed because of the use of the penalty method. Integration by parts is not performed for the 
weak forms of the constitutive equations because only first-order derivatives are present. The 
solution of the non-linear system of equations generated in the FEM was accomplished by means 
of a Picard iteration. In this technique the nodal values of the velocity and the stress from the 
previous iteration are used to evaluate the non-linear terms of the current iteration. The linearized 
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system can thus be solved. The Newtonian solution was used as the initial guess and the iterations 
ended when the change between successive iterations became less than a specified tolerance. 
Details of the form of the final equations that were inserted in the computer algorithm to solve 
the discretized problem can be found in Reference 26. 

There is still some discussion in the literature on viscoelastic flows as to the degree of the shape 
functions which should be used for the velocities, the stresses and the pressure. It has been shown 
that the shape functions used for the pressure in the mixed formulation should be an order less 
than the velocities.' The use of the perialty method, however, eliminates the pressure as a variable. 
The choice for the shape functions for the velocities and the stresses may thus include linear 
polynomials. In the present work, either bilinear or biquadratic (serendipity) isoparametric 
elements were used with the same order interpolation polynomials for the velocity and the stress 
in each case. 

The boundary conditions that were used for the entry flow were the specification of the velocity 
profile at the entrance and exit of the flow domain, no slip at the wall and zero normal component 
of the velocity along the centreline. The stresses were also specified at the entry plane. The lengths 
of two upstream (2H) and four downstream (4h) channel heights from the contraction were used 
for the imposition of the fully developed velocity profile. There are several reports on the subject 
of how far away from the corner these boundary planes should be set. It has been found that 
insufficient distances may not only result in incorrect solutions but may also introduce instability 
into the numerical method.' Detailed reports on this effect are given in References 8 and 29. In the 
case of the present study, the distances that were used were selected on the basis of experimental 
observations of how far from the corner the flow seemed undi~turbed.~' This choice was also 
justified a posteriori from the results of the calculations, where the changes due to the contraction 
were dissipated at distances less than half the upstream and downstream lengths of the meshes 
(see Figures 9 and 11). 

The velocity profiles that were imposed at the entrance and exit of the domain were calculated 
as one-dimensional problems of pressure-driven flow between parallel plates for each constitutive 
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Figure 4. Meshes used in the computations 

equation. This gave considerably different profiles for flows under similar stress levels and flow 
rates because of the different shear-thinning behaviour predicted by the constitutive equations. 

Four meshes were used in the calculations. Three of them had linear elements (MESH1, 
MESH2 and MESH3) and the fourth (MESH4) had biquadratic serendipity elements. The 
number of nodes was 97 for MESH1,204 for MESH2,332 for MESH3 and 208 for MESH4. The 
four meshes are shown in Figure 4. 

4. RESULTS AND DISCUSSION 

4.1. Comparison of convergence limits 

The limits in the convergence of the solution at high elasticity levels that were found in the 
present calculations are shown in Table 11. This table gives the limits of the elasticity levels, the 
shear stress on the wall on the downstream channel (7,) and the flow rate (Q) that could be 
achieved before the divergence of the solution occurred. These last two parameters were used for 
comparisons in this work, since predictions for the elasticity level varied from model to model. as 
will be explained in the following, and because they are usually the critical parameters in actual 
extrusion processes. 

From Table I1 it may be seen that the limits of convergence differ widely from one model to the 
next. But before examining these differences, the problem of the basis of the comparison has to be 
mentioned. In most reports where comparisons between models are given, the basis for these 
comparisons was the level of elasticity of the flow as given by the Deborah (De) or the 
Weissenberg number (We). The main advantage for this choice is the fact that these two numbers 
show the extent of the difference between the viscoelastic and the Newtonian nature of the flow. 
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Table 11. Limits of convergence for all the combhations of models and meshes 

Mesh Model 7 1 2 w a  QP” Dc Wed 
(kPa) (rnm’s-’) 

2 

1 PTT 
JS 
WM 
Leonov-like 
UCM 

PTT 
JS 
WM 
Leonov-like 
UCM 

3 PTT 
JS 
WM 
Leonov-li ke 
UCM 

4 PTT 
(quadratic) JS 

WM 
Leonov-like 
UCM 

34 
33 
43.5 
24 
32 

27 
27 
34 
22 
24 

24 
24 
20 
17.5 
19 

25 
25 
27 
18 
20 

17.54 
16.44 
14.05 
8.2 1 
3.29 

9.32 
9.32 
9.93 
6.37 
2.32 

5.7 1 
5.7 1 
,4.42 
3.49 
1.84 

6.90 
6.90 
8.56 
3.59 
1.94 

11.41 
10.95 
1.42 
7.49 
1.84 

7.98 
7.98 
1.23 
5.85 
1.30 

6.17 
6.17 
0.92 
3.0 1 
I .03 

6.82 
682 
1.17 
3.1 1 
1.08 

1.55 
1.59 
1.42 
1.79 
1.84 

1.90 
1.90 
1.23 
1.68 
1.30 

2.08 
2.08 
0.92 
1.32 
1 a 3  

2.03 
2413 
1.17 
2.33 
1.08 

a wall shear stress at a point far downstream from the contraction. 
Q/W,  flow rate per unit width. 
De = 
We = ( N J ~ T ] ~ ) ~ .  

Another reason for this choice is that De or We may in some cases be used directly in the 
equations as dimensionless parameters and no specific (choices for viscosity, relaxation time 
coefficient or absolute stress levels have to be made. However, this choice is not sufficient for 
comparing different rheological models in real situations since the same elasticity level will result 
in predictions of different flow and stress fields. The reason for this uncertainty is that each model 
will only describe approximately the properties of the materials of interest here, as for example the 
shear-thinning viscosity. In flow between parallel plates, 1.hen. for a model that predicts shear- 
thinning viscosity, the stress levels will be lower than those predicted by the UCM model for the 
same flow rate and the same Deborah number. 

There is another reason why an elasticity parameter should not be used as an absolute criterion 
for the comparison between rheological models. In Figure 5 are shown the predictions of We 
(= N,/2z, ,)  in simple shear flow for the models that were used in this work but with their 
coefficients evaluated to fit the same polystyrene melt. It can be seen from this figure that the 
predictions of the models for the same material and the same simple flow are significantly 
different, especially at high shear rates. Further, the experimental data in the same figure indicate 
that We may actually level off at high shear rates. N o  model can describe this behaviour, except 
perhaps the White-Metzner model (at low shear rates), whose parameters were determined from 
experimental data using both the shear stress and the primary normal stress difference. On the 
contrary, We for the PTT and the JS models shows a maximum and then decreases with 
increasing shear rate, whereas the Leonov-like model climbs to much higher values of We. The 
slope of the curve that corresponds to the UCM model is approximately double the slope of the 
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Figure 5. Weissenberg number in simple shear flow as a function of shear rate for STYRON 678 at 190°C 

experimental data. In any case, if the experimental values of We tend to level off at a value of 
1.5-2.0, there will be a discrepancy between experimental and theoretical results when com- 
parisons are made with numerical results that may show values of We = 6 or even 9. In other 
words, obtaining solutions at a so-called high value of De for a given constitutive equation may be 
meaningless when making comparisons between their predictions and experimental data. 

The need for another basis of comparison is then obvious. The relative importance of the 
elasticity number remains, since there is always a limiting value for convergence, but additional 
criteria have to be used. Because the same material and the same geometry are considered in all 
calculations here, it is suggested in Table I1 that the values of the stress at some characteristic 
point may also be used as the basis for such comparisons. The flow rate is another important 
quantity that can be used, especially for industrial applications, and it is also included in Table 11. 

In terms of the maximum wall shear stress it can be seen that the White-Metzner model shows 
the best results. The PTT and the JS models come next, showing approximately equal limits, and 
the Leonov-like model is found to give the lowest limits. When the comparison is done in terms of 
the flow rates, the picture in somewhat different. For MESH1, the PTT and the JS models will 
exhibit higher limits than the WM model. For the other two meshes the latter will handle higher 
flow rates than the two former ones. The difference between the limits of the stress and the flow 
rates can be explained by the differences that these models predict in the shear-thinning viscosity 
(Figure 1) and this underlines the difficulty of comparing results obtained by different rheological 
models. 

Comparing the results between the different meshes, it may be seen that all the limits decrease 
with the refinement of the mesh. When the number of nodes doubles, as in going from MESH1 to 
MESH2, the decrease is around 20%-25%. An increase of 50% in the number of the nodes from 
MESH2 to MESH3 results in an additional 20% decrease of the limits for convergence. The 
lowest decrease of the limit of convergence with mesh refinement is shown by the Leonov-like 
model, but this model shows limits consistently lower than the other models. The maximum effect 
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of the mesh is found for the WM model, which decreases to such a degree that in the finest mesh it 
shows lower limits than the PTT model. 

Higher limits of convergence were achieved using a mesh with linear elements (MESH2) than 
by using a mesh with quadratic elements and the same number of nodes (MESH4), something 
somewhat unexpected. Yeh et aL6 and Debbaut and Crochet* have reported that a higher order 
of interpolation polynomials would be more likely to show higher limits. It is possible that the 
apparent contradiction between these reports and the present results is due to differences between 
the mixed FEM formulation (velocities, stresses and the pressure as field variables) that the above 
authors used and the penalty/FEM formulation that was used here. 

The limits of convergence for the PTT model in this work are at the same levels as the 
results reported earlier.’ It should be noted that the definition of De for the PTT model in 
these two articles is different from the one used here. If the Deborah number is defined as 
De = J [ 4 ( 2  - 4 ) ] A 3  (as in Reference 8), the values of the limits in Table I1 for this model should 
become 68, 4.8 and 2.64 for MESH1, MESH2 and MESH3 respectively. The limits of 
convergence for the Leonov-like model compare well with those reported by Keunings and 
Crochet,j’ who used meshes with a similar number of nodes but quadratic elements, and are 
lower than the ones reported by Isayev and U ~ a d h y a y , ~ *  who used the full model. The 
dependence of the convergence on the specific mesh, however, makes the quantitative comparison 
between the results of this work and those reported in the literature very difficult. Comparisons, 
therefore, are more meaningful between theoretical results and experimental data obtained for the 
same material under the same flow conditions and between numerical solutions obtained with the 
same mesh. Since for most viscoelastic models there is no analytical solution with which to 
compare the numerical results, the only available method to examine the accuracy of the solution 
and its improvement (or worsening) with the refinement of the mesh or the use of a different 
rheological equation is to compare it with experimental results. In the following subsection the 
accuracy of the numerical results will be examined by comparing the stresses and the streamlines 
from the FEM solutions with stresses and streamlines measured experimentally for the same flow 
conditions. The experimental results come from flow birefringence measurements reported in 
Reference 30. 

4.2. Stress field comparison 

In a flow birefringence experiment, the isochromatic fringes of the stress field are obtained 
using circularly polarized light and the stress optic law. For a 2D flow field the fringe order is 
given as follows:33 

where A’ is the wavelength of the laser beam, W is the thickness of the fluid through which the light 
travels and C is the stress optic coefficient. In this equation the Cartesian co-ordinates are defined 
so that ‘1’ is the direction of the flow, ‘2’ is the direction perpendicular to the flow surfaces and ‘3’ 
is the third co-ordinate, along which the laser beam is directed. 

The experimentally measured fringes are compared directly with the contours of N (evaluated 
from equation (18)) using the calculated values of the stresses at  each point. This comparison can 
be seen in Figure 6 for a 4: 1 contraction flow and a wall shear stress o 16 kPa evaluated in the 
downstream region. The numerical results shown in this figure come from calculations using the 
four different meshes and the PTT model. Figure 7 shows the same contour plots calculated using 
MESH3 and three different rheological models for the same downstream wall shear stress level of 
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Figure 6. Experimental and calculated contours of fringe order in 4:l contraction flow using the PTT model: 
(a) experimental; (b) MESHl; (c) MESHZ; (d) MESH3 (e) MESH4. zw = 16 kPa 

16 kPa. From these figures it can be seen that all four meshes give an acceptable overall picture 
for the isochromatic fringes at  these stress levels. Also, there is no distinguishable qualitative 
difference between the solutions obtained from the several models, something that is probably 
due to the low stress levels. The numerical results of all the meshes show a maximum in N at a 
point upstream from the corner. The presence in the numerical results of other peaks near the 
corner is probably due to oscillations of the calculated stresses, as will be described below. 

In order to quantify the comparisons between the results of the numerical simulation and the 
experimental data, plots were made of the birefringence results taken or calculated along vertical 
and horizontal lines around the re-entrant corner. The lines along which N was plotted are shown 
in Figure 8. The values of the fringe order along the lines AB and CD around the contraction can 
be seen in Figure 9 as calculated for the four meshes by the PTT model and compared to the 
experimental data. The values of N along the lines EF and GH are shown in Figure 10. It should 
be noted for these figures that N takes on a high value for x > 0 (downstream) because of the fast 
downstream flow. Upstream (x < 0) the stresses along A 0  are lower, not only because of the 
greater height of the channel but also because this line lies relatively closer to the centreline. The 
experimental results reach the value of the downstream channel asymptotically, while the 
numerical results show an overshoot near the corner (around x = 0 2 h  in Figure 9). 
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Figure 7. Calculated contours of fringe order in 4: 1 contraction flow using MESH3: (a) UCM; (b) WM; (c) Leonov-like 
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Figure 8. Lines in the flow domain along which the values of the fringe order are plotted in Figures 9-12 

From Figure 9 it can be seen that oscillations are found around the re-entrant corner in this 
flow. The lowest apparent oscillations in the upstream channel are found for the coarsest mesh 
(MESH1). The oscillations in the results based on MESH3 are more pronounced near the entry 
plane and extend up to x = -3h upstream and x = 1.5h downstream, a distance which is 
common for all the meshes. MESH2 leads to oscillations, the magnitude of which is intermediate 
between those of the other two meshes with linear elements. MESH4 also shows high oscillations. 
All calculated values, however, oscillate around the experimental points. 

Along the line y = -0.2h the oscillations are reduced to some degree (Figure 9(b)). Here all the 
meshes show a local maximum at a point around 02h  upstream, then a minimum at x = 0 and 
finally N rises asymptotically to its unperturbed value im the exit region of the die. This local 
maximum is probably an oscillation because the experimental data only show a small shoulder 
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Figure 9. (a) Fringe order along line y = 0. (b) Fringe order along line y = -0.2h. PTT model and different meshes. 
T~ = 16 kPa 

around x = 0 and then continue to rise. No overshoot is shown by either the experimental or the 
numerical results in the downstream channel, except in the results obtained using MESH4. 

Following y on the entrance plane from the top blind corner towards the centreline (from right 
to left in Figure 10(a)), it can be seen that the values of N increase rapidly near the re-entrant 
corner, showing a maximum near y = 0. The fringe order then decreases towards the centreline 
(y = - h) ,  but it does not become zero there because there is a strong elongational flow field along 
this line around the entrance plane, since the fluid has to accelerate to enter the narrower channel. 
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Figure 10. (a) Fringe order along line x = 0. (b) Fringe order along line x = -0.2h. PTT model and different meshes. 
T~ = 16 kPa 

The values of N predicted by all the meshes are approximately the same at the centreline. The 
experimental data also show the abrupt increase near the corner and a maximum around 
y = -O.lh,  in good agreement with the results of MESH2 and MESH3. The agreement at y < 0, 
however, is not so good, since the data show higher values than those obtained by means of 
numerical solutions using the PTT model. 

along y at the line x = -0-2h, somewhat upstream from the contraction, can be 
seen in Figure 10(b). Strangely enough, the oscillations of the numerical solution seem to be worse 

The value of 
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here, even though this line lies further from the singularity at the corner. This is probably due to 
the fact that this line falls on the maxima and minima of the oscillations observed in Figure 9. The 
highest oscillations are shown when MESH4 is used. Clearly the results of MESH1 and MESH4 
are unacceptable. Even though the increase of 3 near the corner for y > 0 agrees well with the 
results of MESH2 and MESH3, the overshoot at y = 0 in the numerical results is higher than the 
experimental data. 

Summarizing the differences between the results obtained using different meshes but the same 
model (PTT), i t  may be seen that for this flow the coarsest mesh will give the lowest oscillations. 
The agreement with the experimental data is, however, the poorest for this mesh. The finer meshes 
with linear elements show worse oscillations and higher peaks, but their results agree better with 
the experimental data at points away from the corner. At the corner itself the overshoots in the 
numerical solution are much higher than the experimental ones. The quadratic mesh gives worse 
results than MESH2, which has the same number of nodes. It seems that the numerical method 
that was developed here works better with linear than with quadratic elements. This is con- 
tradictory to what was reported in Reference 8, where higher-degree polynomials improved the 
solution. Again a possible explanation for this contradiction may be related to the penalty 
formulation that was used here instead of the mixed method that was used in Reference 8. The 
results obtained here should be compared with results obtained for the same flow conditions and 
using the mixed formulation in order to clear these questions. 

For the comprison of the results of different rheological equations, similar plots to those in 
Figures 9 and 10 were made. Figures 11 and 12 show the fringe order calculated using the four 
models and MESH3. I t  can be seen there that the results of all the models show similar 
oscillations. The overall agreement between the numerical results and the experimental data is 
good except in the neighbourhood of the corner (x = 0 in Figure 11 and y = 0 in Figure 12). In 
that area all the models show oscillations and high overshoots which are absent from the data. 
The highest overshoots are shown by the UCM model and the best agreement in the exit channel 
is shown by the White-Metzner model. Oscillations are also found along the line y = 0.2h, 
indicating that high stress gradients extend to some distance from the corner for all the models. 
The results of all the models fall very close to each other in these graphs. 

The picture of the stresses in the extensional field at the centreline around the entrance can be 
seen better from a plot of the normal stress difference along this line. Since the shear stress is zero 
there, T~~ - zYy can be calculated directly from the birefringence data (using equation (19)). These 
results together with the results of the computations are shown in Figure 13. The normal stress 
difference starts rising at a distance around x = 5h upstream form the contraction, shows a 
maximum at x = -0.4h and approaches zero again at x = + 3h. Even though the behaviour of 
the models is qualitatively correct as compared to the experimental data, only the WM and the 
Leonov-like models show good quantitative agreement with the data. It should be noted here 
that the extension rates that occur along the centreline at these flow conditions are low enough, so 
that ij = 31, for all the models. The differences in the extensional viscosity predictions of the 
models that were described earlier cannot be responsible for the disagreement between the 
different curves in Figure 13. 

In summary, the comparison between the experimental and numerical results shows that a 
reasonable stress field for the flow into a contraction can be calculated by the FEM/penalty 
method using any of the five rheological models. Oscillations are found around the re-entrant 
corner, indicating that there may exist a numerical singularity in the stresses at this point. A 
coarse mesh (like MESH1) will smooth these oscillations to some degree. The agreement of the 
results of MESH1 with the experimental data is poor, however, making this mesh unacceptable. 
MESH2 and MESH3 give results in good agreement with the experimental data except in the 
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Figure 11. (a) Fringe order along line y = 0. (b) Fringe order along lline y = -0.2h. MESH3 and different models. 
T,+ = 16 kPa 

very vicinity of the re-entrant corner. High peak values of the stresses are found a little upstream 
from the corner, a reason for the extension of the oscillations at a longer distance upstream than 
downstream. The comparison of the rheological models shows that the WM and the Leonov-like 
models will give the best predictions over the range of cond.itions reported here. These two models 
will also show the best results in the extensional field along the centreline. The PTT and the UCM 
models show lower values for the stresses there, but their results elsewhere are very close to the 
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Figure 12. (a) Fringe order along line x = 0. (b) Fringe order along line x = -0.2h. MESH3 and different models. 
T~ = 16 kPa 

results of the other two models. Some of the disagreement, however, may be due to the inability of 
the models to fit the rheological data exactly. 

4.3. Entrance pressure loss 

The extra pressure drop caused by the contraction is a characteristic of the flow of viscoelastic 
fluids and accounts for the extra energy that is needed to accelerate and deform the elastic fluid 
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Figure 13. Normal stress difference ( T ~ ~  - T?”) along the centreline using MESH3. T, = 16 kPa 

elements as they flow into the exit channel. The entrance pressure loss has been found experi- 
mentally to be positive and it may be associated with the extensional viscosity of a polymeric 
fluid. It has also been proposed as an important quantify with which to compare numerically 
determined values. In order to define the entrance pressure loss in the present work, two points 
were chosen on the wall in the undisturbed regions, one upstream (A) and one downstream (B). 
The entrance pressure loss is the difference between the total pressure drop between A and B 
minus the sum of the pressure drops that would occur in isolated entry and exit channels between 
A or B, respectively, and the entrance plane. 

The isotropic pressure was a secondary variable in the penalty formulation and was calculated 
from the velocity field in the postprocessing step. It was found in the present study that the 
predictions for the entrance pressure loss were very littlc: affected by the mesh refinement. The 
predictions using various rheological models were very different, however, as can be seen in 
Figure 14, where the entrance pressure loss (AP,,,) is plotted against the wall shear stress ( T ~ ) .  It 
can be seen in this figure that AP,,, increases monotonically with the wall shear stress for the PTT 
and the Leonov-like models. The UCM and the WM models, however, show a maximum in 
AP,,,. As 2 ,  increases further, the entrance pressure loss decreases and eventually becomes 
negative. Negative values for AP,,, were also found by Keunings and Crochet for the Olroyd-B 
and the UCM models.31 The results in that report compared qualitatively well with the present 
results. Because of these negative values, the PTT and the Leonov-like models seem to be better 
than the UCM and the WM models for calculations of entrance pressure losses. It is not known at 
this time what leads to the predictions of negative values of AP,,, for some models, but it is 
certainly not an acceptable result. This also suggests that we must consider carefully whether it is 
appropriate to use those models which give negative values for AP,,, in further computations. 

4.4. Streamlines 

The formation of the vortex in the blind corner upstream of the contraction is examined in this 
subsection by studying the picture of the streamlines. It was demonstrated in Reference 1 that 
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Figure 14. Entrance pressure loss in planar 4: 1 contraction 

some polymeric fluids will show strong vortices in planar entry flow while others will show at 
most very weak vortices of constant size under the same flow conditions. The material (PS at 
19OOC) that was used as a test fluid in this work was found experimentally to exhibit only small 
vortices34 which did not grow with We under flow conditions similar to the ones that were 
simulated here. The comparisons of the observed streamlines with the normalized results of the 
several meshes and the PTT model, as well as the results of the other models using MESH3, are 
shown in Figures 15 and 16. 

The streamlines calculated using the PTT model and for all four meshes agree very well with 
each other away from the entrance plane, as should be expected. All the meshes show that the 
streamline closest to the wall starts moving away from the wall of the upstream channel at a 
distance of around x = - 4h from the entrance plane, leaving a triangular region around the blind 
corner. For MESH1 this region is slightly smaller than the other meshes and the angle with which 
the streamline approaches the re-entrant corner is steeper. The values of streamlines at  this 
triangular region are too low to be plotted and well within the approximation error. For MESH2 
and MESH3, however, the weak recirculating vortex in that region has a (normalized) intensity of 
-0.001, which is quite low and may also be within the approximation error. The validity of this 
vortex, however, is supported by the fact that it starts appearing when the mesh is refined (instead 
of disappearing with finer meshes as was the case in Reference 35, and its position is the same and 
its intensity is consistent among runs under different flow rates (it decreases with decreasing flow 
rate). The velocity vectors also show a very slow recirculating motion in the same areaz6 for the 
finer mesh. 

Debbaut and Crochet' and Keunings and Crochet3' also found such a vortex for the PTT 
model under similar elasticity levels. The vortex intensity that was reported in these articles was 
higher than the one calculated here, perhaps because the normalization of the streamlines was 
done differently or because the parameters of the model (PTT) that was used were different. 
Because of its very small intensity, however, the existence of this vortex may be of rather small 
rheological importance. In another paper36 we discuss the possible influence of the parameter E of 
this model on the existence and intensity of the calculated vortex. 
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Figure 15. Calculated streamlines using the PTT model and different meshes. (a) experimental; (b) MESHl; (c) MESHZ; 
(d) MESH3; (e) MESH4. T* = 16 kPa 

Under the same stress levels as above, all the rheological models showed a vortex (Figure 16). It 
should be noted, however, that the flow rates for each model in Figure 16 are different because of 
the differences in the predictions of shear-thinning viscosity. The fact that the vortex predicted by 
the WM model is much stronger and larger than the other models is probably due to the higher 
flow rate that this model shows under the same shear stress level. Another possible reason for this 
stronger vortex may be the fact that the ratio i j /qo as predicted by this model is higher than the 
ones predicted by the other models under these conditions (Figure 3). Vortices were found to be 
formed more easily in experiments with fluids that show higher values for this ratio.30 The 
weakest vortex is shown by the UCM model, something which may be due to the lower flow rate 
that this model predicts for a given value of shear stress. Fcrr this model it was found in References 
35 and 37 that such a vortex was only a numerical artefact. 

4.5. Elongutionul rutes in the.pow field 

The acceleration field around the contraction was examined in a previous subsection by 
observing the normal stress difference along the centreline. This line, however, is not the only area 
in the flow field with a high extensional flow component. There is another area near the re-entrant 
corner where, in addition to shear flow, the fluid elements also undergo extensional deformation. 
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Figure 16. Streamlines in 4: 1 
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contraction flow using MESH3 and different models: (a) UCM; (b) Leonov-like; (c) WM. 
T~ = 16 kPa 

In order to define a measure of the extensional deformation in a two-dimensional field with 
both extension and shear deformation and to be consistent with the quantity that is used in 
uniaxial extension measurements, the extension rate (8) in this work is defined as 

In uniaxial extension this measure will reduce to the same 8 that was used in defining the Trouton 
viscosity in Figure 3. 

The second area with high extension rates can be seen in the contour plot of L (Figure 17). This 
area lies around a line starting at the re-entrant corner and extending at a 45" angle towards the 
wall upstream. The point with the highest value of L in the flow domain is located on that line, a 
little away from the corner, in the same area where the maximum in the birefringence also occurs 
(see Figure 9). It seems that the birefringence in this area comes more from the contribution of the 
extensional stresses than the shear stresses. Further, the angle that this line makes to the 
horizontal may be related to the 'natural entry angle', the angle at which the viscoelastic fluid 
enters the downstream channel.30 Some researchers use this angle as a measure of the size of 
vortex that may exist at the blind corner upstream. If the vortex calculated from the streamlines in 
this work is compared to this angle, it can be seen that the natural entry angle should be around 
70" rather than 45". It is possible that these two angles above are related but do not coincide. 

In the numerical solution of the flow into the contraction, the values of the maximum extension 
rate (imax) were found near the re-entrant corner. These values for each model and mesh at their 
limits of convergence are shown in Table 111, together with the values of the critical extension rate 
in uniaxial extension (&), above which the models predict an infinite value for ij in uniaxial 
extensional flow. As is expected, the values of i,,, decrease with the refinement of the mesh. 
However, in the coarsest mesh the value of 8,,, is higher than icrit. This is reversed in finer meshes. 
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Figure 17. Contours of extensional strain rate (calculated using equation (19)) in planar 4: 1 contraction, predicted by the 
PTT model using MESH3. 7, = 16 kPa 

Table 111. Critical extension rates for the rheological models and maximum 
extension rates (see equation (19)) found in the calculations 

Model Mesh Emax &,:,it Position of 
(s-') ( s - l )  maximum 

PTT 

JS 

1 2.87 
2 2.54 ._ 

3 2.07 

-0.1, 0-01 
- 0.16, 0.0 
- 0.26, 0.05 

1 2.78 -0.1, 0.01 
2 2.57 1.25 -0.16, 0.0 
3 2.09 -026, 0.05 

I 2.43 -0.1, 0.01 

3 1.14 -0.26, 0.05 

1 3.18 -01, 0.01 

3 1.20 -0.26, 0.05 

- 0.16, 0.0 Leonov-like 2 1.83 .- 

WM 2 1.88 ;!.4 - 0.16, 0.0 

UCM 
1 1.44 -0.1, 0.01 
2 0.79 0.83 - 0.16, 0.0 
3 059 -026, 0.05 

It is believed here that the coarse discretization of MESH1 actually smooths out the unbounded 
peak of the stresses that should result from an extension rate higher than icri,. This unbounded 
value of the extensional viscosity is not the only cause of the lack of convergence of the numerical 
solutions, as can be seen from the existence of limits even in models that do not show much 
unbounded values. This was also reported by Ke~n ings ,~*  who showed that the limit may go to 
zero for an infinitely fine mesh even for the Leonov-like model, a model which shows an 
extensional viscosity that grows gently with extension rate, approaching 61, asymptotically. 

4.6. Behaviour of the solution at the limit of convergence 

Much was said about the problem of convergence in the numerical calculations for the 
viscoelastic flows and its possible relation to the existence of singular points at the corners. The 
oscillations that were found around the corner and their increase with the mesh refinement give 
indications of such a spatial singularity. Lipscomb et d3' gave evidence for the presence of a 
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singularity for a second-order fluid and a UCM model. Following the presence of oscillations in 
the results of the present calculations with the PTT and the Leonov-like models, as well as reports 
by Keunings and Crochet,31 it is believed that such singularities are not avoided by these two 
models either. 

Figure 18 shows the evolution of the oscillations in N along the line y = 0 for values of wall 
shear stress of 20,24 and 26 kPa, given by the PTT model using MESH3. At a wall shear stress of 
24 kPa the convergence was marginal. At 26 kPa the method did not converge and the results 
correspond to the iteration with the least error. The values of the birefringence in this figure are 
normalized for the comparison by division by the values of N at the downstream wall for each 
curve. It can be seen that as the wall stress level increases, the oscillations around the re-entrant 
corner also increase in magnitude and extend further upstream and downstream. However, there 
is no qualitative difference in the solution for a wall shear stress of 26 kPa from the solutions at 
lower stress levels. It seems that the accumulation of the error at  that point is just too large for the 
method to converge. 

Because of the lack of a sudden change in the values of the stresses upon the transition from 
convergence to divergence of the solution, it is interesting to see whether the results obtained at 
26 kPa wall shear stress agree with the experimental data (Figure 19). The comparison near the 
corner is impossible because of the high oscillations of the numerical results and also because the 
resolution of the experimental technique is reduced at high stress levels, where there are many 
fringes in the same area. The results a little away from the corner, however, are close to the 
experimental data. Following this and considering the parametric family of solutions with the 
stress at the wall (or the elasticity De) as the parameter, it seems that the limit of convergence does 
not occur at some singular value of this parameter, such as a limit or a bifurcation point. That is, 
such points that have been found elsewhere may be only numerical artefacts, something that has 
already been suggested in Reference 8. Rather, the divergence occurs because of accumulation of 
error above the level that the method can handle. This error may be connected with the possible 

waLL shear s t ress  : 
20 kPa _. .. . ... .... . 

--____ 24 kPa !i 

.o 
x/h 

Figure 18. Change of the oscillations of the stresses around the corner as the stress level increases and the limit of 
convergence is passed. MESH3 and PTT were used. The limit for this combination of model and mesh was 24 kPa 
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Figure 19. Stress around the corner for a solution that did not converge. PTT and MESH3 

existence of a spatial singularity of the stresses at the corner. This problem, therefore, will not be 
avoided in finer meshes. The results in the present paper seem to confirm the conclusions by 
Lipscomb et that the effect of such a singularity will be enhanced if the size of the elements 
around the corner is reduced and the convergence will deteriorate. Of course there is also the 
possibility of the change of type of the differential equations in the same region, as was mentioned 
earlier.40- 41 

5. CONCLUSIONS 

It is well known that one cannot escape the convergence problem merely by the choice of the 
viscoelastic constitutive equation. At some critical value of fluid elasticity the numerical solution 
will fail regardless of which constitutive equation is selected. However, reports of convergence 
limits at Deborah numbers as high as 10.0, for example, can be misleading and, furthermore, they 
can be functions of the constitutive equation used in the computations. For example, for a mesh 
containing 256 elements and 290 nodes, the critical values of De for convergence are 7.98 for the 
PTT model but only 1.23 for the WM model. On the other hand, the wall shear stress values in the 
downstream region of the die are 27 and 34 kPa for the respective models. Hence we recommend 
that when specifying the limits of convergence, some otheir parameters be specified, such as wall 
shear stress, volumetric flow rate or average velocity. Otherwise the numerical solutions may be 
of little value at what appears to be an extraordinarily high level of fluid elasticity. 

Another point that is to be made is that there seems to be a range of mesh refinements over 
which reasonable solutions can be obtained, as confirmed by the comparison with flow birefrin- 
gence data. Unfortunately there are no guidelines or rules for selecting an appropriate mesh 
refinement. On the other hand, there is a wide range of convergence limits obtained by using 
various rheological models. The UCM model was found to give the lowest limits, while the WM 
and the PTT models show the highest limits for Convergence, when the comparison was based on 
the wall shear stress or the volumetric flow rate. However, no significant differences were found 
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between the results of the various models when the calculations were done for wall shear stress 
levels at which all the models would converge, except in the results of the entrance pressure loss, 
where the predictions of negative values for AP,,, by the UCM and the WM models may render 
them unacceptable to use. 

Finally, the loss of convergence may be attributed to the inability of the Galerkin finite element 
method to handle the stress gradients at the re-entrant corners. As the stress levels increase 
because of increasing flow rate, the stresses at the corner are predicted to become quite large in a 
relatively small area and begin to oscillate. The approximation error then grows, causing the 
numerical solution not to converge. Even though the stresses are oscillating, they oscillate around 
the measured values. When the solution fails to converge, the oscillations grow in amplitude but 
still occur about the measured values of stress. These results add further support that the 
convergence problems may be due to approximation errors. 
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APPENDIX: LIST OF SYMBOLS 

rate of deformation tensor 
wall shear rate downstream from the contraction 
extra stress tensor 
wall stress downstream from the contraction 
second invariant of rate of deformation tensor 
extensional strain rate 
Deborah number, A$, 
Weissenberg number, (zxx - ~y, , ) /2zx,  
half-height of downstream channel 
half-height of upstream channel 
viscosity 
zero-shear-rate viscosity 
viscosity coefficients 
extensional viscosity 
dynamic viscosity 
relaxation times 
primary normal stress difference 
primary normal stress difference coefficient 
fringe order 
wavelength of laser beam in birefringence measurements 
stress optic coefficient 
width of die 
non-affinity parameter for the PTT model 
extensional parameter in the PTT model 
penalty parameter 
entrance pressure loss 
volumetric flow rate 
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